Tensorflow-GPU setup with cuDNN and NVIDIA CUDA 9.0 on Ubuntu 18.04 LTS

Pre-requisite: CUDA should be installed on the machine with NVIDIA graphics card

 

CUDA Setup

Driver and CUDA toolkit is described in a previous blogpost.

With a slight change since the Tensorflow setup requires CUDA toolkit 9.0

# Clean CUDA 9.1 and install 9.0
$ sudo /usr/local/cuda/bin/uninstall_cuda_9.1.pl 
$ rm -rf /usr/local/cuda-9.1
$ sudo rm -rf /usr/local/cuda-9.1
$ sudo ./cuda_9.0.176_384.81_linux.run --override

# Make sure environment variables are set for test
$ source ~/.bashrc 
$ sudo ln -s /usr/bin/gcc-6 /usr/local/cuda/bin/gcc
$ sudo ln -s /usr/bin/g++-6 /usr/local/cuda/bin/g++
$ cd ~/NVIDIA_CUDA-9.0_Samples/
$ make -j12
$ ./deviceQuery

Test Successful

cuDNN Setup

Referenced from a medium blogpost.

The following steps are pretty much the same as the installation guide using .deb files (strange that the cuDNN guide is better than the CUDA one).

Screenshot from 2018-07-13 16-03-10.png

  1. Go to the cuDNN download page (need registration) and select the latest cuDNN 7.1.* version made for CUDA 9.0.
  2. Download all 3 .deb files: the runtime library, the developer library, and the code samples library for Ubuntu 16.04.
  3. In your download folder, install them in the same order:
# (the runtime library)
$ sudo dpkg -i libcudnn7_7.1.4.18-1+cuda9.0_amd64.deb
# (the developer library)
$ sudo dpkg -i libcudnn7-dev_7.1.4.18-1+cuda9.0_amd64.deb
# (the code samples)
$ sudo dpkg -i libcudnn7-doc_7.1.4.18-1+cuda9.0_amd64.deb

# remove 
$ sudo dpkg -r libcudnn7-doc libcudnn7-dev libcudnn7

Now, we can verify the cuDNN installation (below is just the official guide, which surprisingly works out of the box):

  1. Copy the code samples somewhere you have write access: cp -r /usr/src/cudnn_samples_v7/ ~/
  2. Go to the MNIST example code: cd ~/cudnn_samples_v7/mnistCUDNN.
  3. Compile the MNIST example: make clean && make -j4
  4. Run the MNIST example: ./mnistCUDNN. If your installation is successful, you should see Test passed! at the end of the output.
(cv3) rahul@Windspect:~/cv/cudnn_samples_v7/mnistCUDNN$ ./mnistCUDNN
cudnnGetVersion() : 7104 , CUDNN_VERSION from cudnn.h : 7104 (7.1.4)
Host compiler version : GCC 5.4.0
There are 2 CUDA capable devices on your machine :
device 0 : sms 28  Capabilities 6.1, SmClock 1582.0 Mhz, MemSize (Mb) 11172, MemClock 5505.0 Mhz, Ecc=0, boardGroupID=0
device 1 : sms 28  Capabilities 6.1, SmClock 1582.0 Mhz, MemSize (Mb) 11163, MemClock 5505.0 Mhz, Ecc=0, boardGroupID=1
Using device 0

...

Result of classification: 1 3 5
Test passed!

In case of compilation error

Error

/usr/local/cuda/include/cuda_runtime_api.h:1683:101: error: use of enum ‘cudaDeviceP2PAttr’ without previous declaration
extern __host__ __cudart_builtin__ cudaError_t CUDARTAPI cudaDeviceGetP2PAttribute(int *value, enum cudaDeviceP2PAttr attr, int srcDevice, int dstDevice);
/usr/local/cuda/include/cuda_runtime_api.h:2930:102: error: use of enum ‘cudaFuncAttribute’ without previous declaration
 extern __host__ __cudart_builtin__ cudaError_t CUDARTAPI cudaFuncSetAttribute(const void *func, enum cudaFuncAttribute attr, int value);
                                                                                                      ^
In file included from /usr/local/cuda/include/channel_descriptor.h:62:0,
                 from /usr/local/cuda/include/cuda_runtime.h:90,
                 from /usr/include/cudnn.h:64,
                 from mnistCUDNN.cpp:30:

Solution: sudo vim /usr/include/cudnn.h

replace the line '#include "driver_types.h"' 
with '#include <driver_types.h>'

 

Configure the CUDA & cuDNN Environment Variables

# cuDNN libraries are at /usr/local/cuda/extras/CUPTI/lib64
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda-9.0/lib64 
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda-9.0/lib 
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/extras/CUPTI/lib64

source ~/.bashrc

TensorFlow installation

The python environment is setup using a virtualenv located at /opt/pyenv/cv3

$ source /opt/pyenv/cv3/bin/activate
$ pip install numpy scipy matplotlib 
$ pip install scikit-image scikit-learn ipython

Referenced from the official Tensorflow guide 

$ pip install --upgrade tensorflow      # for Python 2.7
$ pip3 install --upgrade tensorflow     # for Python 3.n
$ pip install --upgrade tensorflow-gpu  # for Python 2.7 and GPU
$ pip3 install --upgrade tensorflow-gpu=1.5 # for Python 3.n and GPU

# remove tensorflow
$ pip3 uninstall tensorflow-gpu

Now, run a test

(cv3) rahul@Windspect:~$ python
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
2018-08-14 18:03:45.024181: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: A VX2 FMA
2018-08-14 18:03:45.261898: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:03:00.0
totalMemory: 10.91GiB freeMemory: 10.75GiB
2018-08-14 18:03:45.435881: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 1 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:04:00.0
totalMemory: 10.90GiB freeMemory: 10.10GiB
2018-08-14 18:03:45.437318: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0, 1
2018-08-14 18:03:46.100062: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-08-14 18:03:46.100098: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0 1
2018-08-14 18:03:46.100108: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0: N Y
2018-08-14 18:03:46.100114: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 1: Y N
2018-08-14 18:03:46.100718: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1039 8 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0, compute capability: 6.1)
2018-08-14 18:03:46.262683: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 9769 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:04:00.0, compute capability: 6.1)
>>> print(sess.run(hello))
b'Hello, TensorFlow!'

Looks like it is able to discover and use the NVIDIA GPU

KERAS

Now add keras to the system

pip install pillow h5py keras autopep8

Edit configuration, vim ~/.keras/keras.json

{
"image_data_format": "channels_last",
"backend": "tensorflow",
"epsilon": 1e-07,
"floatx": "float32"
}

A test for keras would be like this at the python CLI,

(cv3) rahul@Windspect:~/workspace$ python
Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux
>>> import keras
Using TensorFlow backend.
>>>

 

END.

 

Advertisements

Anaconda for your Image Processing, Machine Learning, Neural Networks, Computer Vision development environment using VS Code

Python is a great language and I will not go into explaining why it is so. Here is a brief setup for your development environment in case you are tinkering with computer vision problems and looking at learning neural network on your windows laptop.

Anaconda3 5.0

64 bit Download: https://www.anaconda.com/download

Install Anaconda with the default options.

  • Anaconda Navigator is a great place to look at your environment and activate them as per your need.
  • In case you want to have a Python 2x and 3x environment side by side, then you can create them in navigator. Here I have a base(root) setup with Python 3.6 and an additional Python 2.7 environment.
  • In order to use a particular environment you can click on that environment in the navigator or go to the Anaconda prompt and execute the following command
"(base)C:\Users\Karma>activate Py27"
  • To deactivate use
deactivate
  • To create a new environment use the following command:
(base)C:\Users\Karma>conda create -n Py27 python=2.7 anaconda

Anaconda-Navigator

Whenever you want to use a particular environment just go to the environments section and activate it. This will setup your python with the packages and version as configured in that environment.  In the screenshot above I have tensorflow in my base environment while its always better to have a separate environment for this.

In case you are using Cmder like me then go for this:

Considering where you have installed your Anaconda
> C:\Anaconda3\Scripts\activate.bat C:\Anaconda3
or
> C:\Users\Karma\Anaconda3\Scripts\activate.bat C:\Users\Karma\Anaconda3
> conda info --envs
> conda activate py27
> conda deactivate

Lets try to use package manager “conda” for the setup.

Run the following installation command on Anaconda Command Prompt which will open up showing prompt as (C:\Anaconda3) C:\Users\Karma>:

In order to find packages, you should look at the Anaconda repository ( https://anaconda.org/anaconda/repo )

# Adding the menpo channels and install opencv
conda install -c https://conda.binstar.org/menpo opencv
conda config --add channels menpo
conda install -c menpo opencv

# or directly use conda-forge
conda install -c conda-forge opencv

# Install packages
conda install numpy
conda install scipy
conda install matplotlib

# List packages
conda list

OpenCV

If the OpenCV installation did not go through then we can use the pre-built windows binaries maintained by,

Christoph Gohlke at https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv

Download File: You can remove these modules by using “pip uninstall <package>”

(base)λ pip install opencv_python-3.4.0-cp36-cp36m-win_amd64.whl
Processing c:\users\karma\downloads\opencv_python-3.4.0-cp36-cp36m-win_amd64.whl
Installing collected packages: opencv-python
Successfully installed opencv-python-3.4.0
(base)λ pip install opencv_python-3.4.0+contrib-cp36-cp36m-win_amd64.whl
Processing c:\users\karma\downloads\opencv_python-3.4.0+contrib-cp36-cp36m-win_amd64.whl
Installing collected packages: opencv-python
Successfully installed opencv-python-3.4.0+contrib

In my case I used SIFT and SURF implementations which were made available in the contrib packages.

Now, that we have packages set, lets test it out on the python interpreter interface,
Use the following commands on the python CLI.

import numpy as np
import cv2

TensorFlow

Instructions: https://www.tensorflow.org/install/install_windows

To install this package with conda run:
conda install -c conda-forge tensorflow

Version changes based on the repository you are trying to download from.

I typically use VS Code but if you like smooth scrolling go for Sublime.

In VS Code I use ms-python.python, tht13.python extensions to simplify my workspace.

VSCode-Python

Debugging is critical to work with any kind of code. So here is some configuration to get you started here.

  • Verify that the workspace settings.json file has the right python path
"python.pythonPath ": "C:\\Anaconda3\\python.exe"
  • Add a launch.json in your project .vscode folder with the following values
{
   "name": "Python",
   "type": "python",
   "pythonPath":"${config:python.pythonPath}", "request": "launch", "stopOnEntry": true, "console": "none", "program": "${file}", "cwd": "${workspaceFolder}", "debugOptions": [ "WaitOnAbnormalExit", "WaitOnNormalExit", "RedirectOutput" ] }
This will get you setup for debugging and here is how the debug interface would look like when you have put the breakpoints and stepped through the code.
VSCode-Python-Debug

Good Luck.